Selection of important input variables for RBF network using partial derivatives

نویسندگان

  • Jarkko Tikka
  • Jaakko Hollmén
چکیده

In regression problems, making accurate predictions is often the primary goal. Also, relevance of inputs in the prediction of an output would be valuable information in many cases. A sequential input selection algorithm for Radial basis function (SISAL-RBF) networks is presented to analyze importances of the inputs. The ranking of inputs is based on values, which are evaluated from the partial derivatives of the network. The proposed method is applied to benchmark data sets. It yields accurate prediction models, which are parsimonious in terms of the input variables.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short term load forecast by using Locally Linear Embedding manifold learning and a hybrid RBF-Fuzzy network

The aim of the short term load forecasting is to forecast the electric power load for unit commitment, evaluating the reliability of the system, economic dispatch, and so on. Short term load forecasting obviously plays an important role in traditional non-cooperative power systems. Moreover, in a restructured power system a generator company (GENCO) should predict the system demand and its corr...

متن کامل

Hierarchical Radial Basis Function Neural Networks for Classification Problems

Hierarchical neural networks consist of multiple neural networks assembled in the form of an acyclic graph. The purpose of this study is to identify the hierarchical radial basis function neural networks and select important input features for each sub-RBF neural network automatically. Based on the pre-defined instruction/operator sets, a hierarchical RBF neural network can be created and evolv...

متن کامل

Estimation of Cadmium and Uranium in a stream sediment from Eshtehard region in Iran using an Artificial Neural Network

Considering the importance of Cd and U as pollutants of the environment, this study aims to predict the concentrations of these elements in a stream sediment from the Eshtehard region in Iran by means of a developed artificial neural network (ANN) model. The forward selection (FS) method is used to select the input variables and develop hybrid models by ANN. From 45 input candidates, 13 and 14 ...

متن کامل

Forecasting of rainfall using different input selection methods on climate signals for neural network inputs

Long-term prediction of precipitation in planning and managing water resources, especially in arid and semi-arid countries such as Iran, has a great importance. In this paper, a method for predicting long-term precipitation using weather signals and artificial neural networks is presented. For this purpose, climatic data (large-scale signals) and meteorological data (local precipitation and tem...

متن کامل

QSAR studying of oxidation behavior of Benzoxazines as an important pharmaceutical property

In this work the electrooxidation half-wave potentials of some Benzoxazines were predicted from their structural molecular descriptors by using quantitative structure-property relationship (QSAR) approaches. The dataset consist the half-wave potential of 40 benzoxazine derivatives which were obtained by DC-polarography. Descriptors which were selected by stepwise multiple selection procedure ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008